

Please direct Transmission Annual Planning Report enquiries to:

Stewart Bell Group Manager Strategy and Planning Investment and Planning Division Powerlink Queensland

Telephone: (07) 3860 2374

Email: sbell@powerlink.com.au

Disclaimer: While care is taken in the preparation of the information in this report, and it is provided in good faith, Powerlink Queensland accepts no responsibility or liability for any loss or damage that may be incurred by persons acting in reliance on this information or assumptions drawn from it.

Transmission Annual Planning Report Addendum 2016

This document should be read in conjunction with Powerlink's 2016 Transmission Annual Planning Report, in particular, Chapters 5 and 7.

Introduction

Powerlink has introduced a new chapter (Chapter 7) in its 2016 Transmission Annual Planning Report (TAPR) which presents indicative capacity information at selected 132kV and 110kV connection points in its transmission network. This addendum to the 2016 TAPR has been compiled to raise awareness of the location of existing generation. It provides further information on the impact of new generators locating in close proximity (electrically) to existing generation, in particular, the potential for congestion to occur in the transmission network.

Congestion occurs when the incremental increase in the amount of electricity that can flow over a particular line or other transmission system element is constrained by physical or system limitations, usually reflected by equipment ratings. New (and existing) generation connecting into areas with existing constraints and low network capability are at risk of being constrained. Existing network constraints are described in Chapter 5 of the 2016 TAPR.

Table 5.1 in Chapter 5 of the TAPR presents the existing and committed transmission connected generation and scheduled embedded generators connected to Powerlink's transmission network. Table 5.1 is reproduced in this addendum for ease of reference.

Network capacity for new generation

Powerlink has assessed the ability of various locations across the existing transmission network to connect additional generation capacity without significant network congestion emerging. This section provides a broad overview of the results of this assessment. Interested parties are invited to use this data as a first pass to facilitate high level decision making. The data presented here is not exhaustive, and is not intended to replace the existing procedures and processes that must be followed to access Powerlink's transmission network.

Locations assessed for generation connection capacity were selected based broadly on distance from metropolitan load centres. Locations close to major cities were considered unlikely to host a large renewable energy connection, and were excluded from the assessment. In addition, plant operating at 275kV (and higher) were excluded from this study as they can generally accommodate significant levels of generation. The approach used to establish the available capacity at the selected sites was as follows:

- A notional generator was placed sequentially at each of the selected locations and its output was gradually
 increased, while contributions from other generation sources at that location were set to zero. The capacity
 of the location was established when either:
 - o the loss of a network element caused an overload of one or more adjacent elements; or
 - o the size of the notional generator connection exceeded the network strength.

Network strength is measured through the fault level and short circuit ratio in an area.

Addendum issued August 2016

The results of the assessment are shown in Table 7.1

Table 7.1 Indicative connection point capacity limits in the existing transmission network²

132kV and 110kV Subs	tation Connection Nodes As	Indicative Connection Point Capaci Limit			
Baralaba	Egans Hill	Norwich Park			
Biloela	Grantleigh	Oonooie			
Cardwell	Ingham South	Peak Downs	up to FOM\A/		
Coppabella	Innisfail	Proserpine	up to 50MW		
Dingo	Kamerunga (I)	Turkinje			
Edmonton	Moura				
Alligator Creek	Collinsville North	Pandoin			
Bluff	Dan Gleeson	Rocklands			
Bowen North	Dysart	Strathmore	between 50MW and 150MW		
Bulli Creek	Kemmis	Tangkam (I) (2)			
Burton Downs	Mackay (I)	Tully			
Chalumbin (I)	Moranbah South	Wandoo			
Chinchilla	Mt. McLaren	Woree			
Clare South (I)	Newlands				
Alan Sheriff	Larcom Creek (I) Pioneer Valley				
Blackwater	Lilyvale (I)	Ross			
Bouldercombe	Middle Ridge	Teebar Creek	between 150MW and 400MW		
Callemondah	Moranbah	Townsville South (I)	Detween 1501*1VV and 4001*1VV		
Columboola (I)	Nebo	Woolooga			
Gin Gin	Palmwoods	Yabulu South (I)			
Blackstone Calliope River (I)		Gladstone South	potentially greater than 400MW		

Notes:

The findings indicate that the Queensland transmission network is sufficiently strong, and well positioned to accommodate sizeable quantities of new generation without encroaching stability limits. These results are encouraging, particularly given the volume of interest shown in renewable energy projects in Queensland.

⁽I) Transmission connected, scheduled or significant non-scheduled embedded generation, either currently exists or is committed at these connection points.

⁽²⁾ Network congestion has occurred historically at this location during periods of material local generation dispatch. Please refer to Chapter 5 of the 2016 TAPR for further information.

²⁷⁵kV and 330kV connections were excluded from this assessment on the basis that they can generally accommodate significantly higher levels of generation.

Key points to note:

- Generation opportunities presented in this section are not cumulative. If a new generator connects to the network, it will likely impact the capacity of other areas in the network. Similarly, changes to the existing network arrangement will impact transfer limits and consequently, available capacity. Network capacity must be reassessed each time the network topology changes or a prospective generator commits.
- The capacity limits are based primarily on thermal limits and network strength³, with the assumption that the proposed generation facility will comply with the NER's automatic access standard for reactive power dispatch. A formal connection enquiry could trigger an assessment of other stability limits, including the potential for network congestion.
- While some areas may appear to have restricted capacity, there may be low cost solutions available to accommodate much larger capacities. Fast run-back schemes are often used to curtail generation to avoid breaching thermal limits. The capacities stated in Table 7.1 are therefore not absolute. They are presented as a guideline, and starting point for further discussions.
- The indicative connection point capacity limits do not consider the impact of the varying power system behaviours. Connection location and generator bidding strategy play an important role in determining dispatch merit order and can lead to constrained generation, regardless of which generator connected first. Existing generation could be constrained off in future due to new connections.

Network strength is measured through the fault level and short circuit ratio in an area. Fault level is the maximum current expected to flow in response to a short circuit at a given point in the power system. A project-specific measurement of system strength for a generator connection is the Short Circuit Ratio (SCR), which is the ratio of the power system fault level at the proposed connection point to the rated generator connection. Both the minimum fault level and the minimum SCR are important values in establishing the limit of an asynchronous generator connection (such as wind or solar).

Addendum issued August 2016

Table 5.1 Available generation capacity

Existing and committed plant connected to the Powerlink transmission network and scheduled embedded generators are shown in Table 5.1 (TAPR 2016 – available generation capacity) below.

	Available capacity MW generated (I)							
Location	Winter 2016	Summer 2016/17	Winter 2017	Summer 2017/18	Winter 2018	Summer 2018/19		
Coalfired								
Stanwell	1,460	1,460	1,460	1,460	1,460	1,460		
Gladstone	1,680	1,680	1,680	1,680	1,680	1,680		
Callide B	700	700	700	700	700	700		
Callide Power Plant	900	900	900	900	900	900		
Tarong North	443	443	443	443	443	443		
Tarong	1,400	1,400	1,400	1,400	1,400	1,400		
Kogan Creek	744	730	744	730	744	730		
Millmerran	852	760	852	760	852	760		
Total coalfired	8,179	8,073	8,179	8,073	8,179	8,073		
Combustion turbine								
Townsville (Yabulu) (2)	243	234	243	234	243	233		
Mt Stuart (3)	419	379	419	379	419	379		
Mackay (4)	34	34	34	_	-	_		
Barcaldine (2)	37	34	37	34	37	34		
Yarwun (5)	160	155	160	155	160	155		
Roma (2)	68	54	68	54	68	54		
Condamine	144	144	144	144	144	144		
Braemar I	504	471	504	471	504	471		
Braemar 2	519	495	519	495	519	495		
Darling Downs	633	580	633	580	633	580		
Oakey (6)	340	282	340	282	340	282		
Swanbank E (7)	_	_	385	385	385	385		
Total combustion turbine	3,101	2,862	3,486	3,213	3,452	3,212		
Hydro electric								
Barron Gorge	66	66	66	66	66	66		
Kareeya (including Koombooloomba) (8)	93	93	93	93	93	93		
Wivenhoe (9)	500	500	500	500	500	500		
Total hydro electric	659	659	659	659	659	659		
Sugar mill								
Invicta (8)	34	0	34	0	34	0		
Total all stations	11,973	11,594	12,358	11,945	12,324	11,944		

Notes:

- (1) The capacities shown are at the generator terminals and are therefore greater than power station net sent out nominal capacity due to station auxiliary loads and stepup transformer losses. The capacities are nominal as the generator rating depends on ambient conditions. Some additional overload capacity is available at some power stations depending on ambient conditions.
- (2) Townsville 66kV component, Barcaldine and Roma power stations are embedded scheduled generators. Assumed generation is accounted in the transmission delivered forecast.
- (3) Origin Energy has advised AEMO of its intention to retire Mt Stuart at the end of 2023.
- (4) Stanwell Corporation has advised AEMO of its intention to retire Mackay GT at the end of financial year 2016/17.
- (5) Yarwun is a non-scheduled generator, but is required to comply with some of the obligations of a scheduled generator.
- (6) Oakey Power Station is an open-cycle, dual-fuel, gas-fired power station. The generated capacity quoted is based on gas fuel operation.
- (7) Swanbank E has been placed into cold storage until 1 July 2017.
- (8) Koombooloomba and Invicta are transmission connected non-scheduled generators.
- (9) Wivenhoe Power Station is shown at full capacity (500MW). However, output can be limited depending on water storage levels in the dam.

Registered office

33 Harold St Virginia

Queensland 4014 Australia

ABN 82 078 849 233

Postal address:

GPO Box 1193 Virginia

Queensland 4014 Australia

Telephone

(+617) 3860 2111

(during business hours)

Internet

www.powerlink.com.au

Social media

